Metal-Tolerant Bioinoculant Pseudomonas putida KNP9 Mediated Enhancement of Soybean Growth under Heavy Metal Stress Suitable for Biofuel Production at the Metal-Contaminated Site

Author:

Tripathi Manishi1,Kumar Saurabh2,Makarana Govind2ORCID,Goel Reeta3

Affiliation:

1. Department of Microbiology, School of Lifescience and Biotechnology, CSJMU, Kanpur 208024, India

2. ICAR-Research Complex for Eastern Region, Patna 800014, India

3. Institute of Applied Sciences& Humanities, GLA University, Mathura 281406, India

Abstract

The contamination of agricultural land with heavy metals is a global concern. Agricultural products produced in heavy metal-contaminated soil are prone to metal accumulation, and thus, are less fitted for consumption due to food safety issues. The cultivation of biofuel crops in contaminated soil would provide immediate economic benefit to the landholders while simultaneously reclaiming contaminated sites in the long run. The use of edible soybean for biodiesel production is discouraged due to the negative impact on food security. However, soybean produced in metal-contaminated soil would be suitable for biodiesel production. In this study, the tolerance and metal bioaccumulation potential of Pseudomonas putida KNP9 for Pb and Cd is investigated, and KNP9 is tested for soybean growth enhancement in cadmium and lead-amended soil. The maximum metal tolerance for the Pb and Cd in KNP9 was 1580 µM and 546 µM, respectively. KNP9 was found to be effective in removing both Pb and Cd from the solution. SEM-EDX revealed that KNP9 bioaccumulates both Pb and Cd. In pot trial studies, KNP9 was found to be effective in enhancing soybean growth with respect to untreated control under lead and cadmium stress. Thus, KNP9 inoculation protects soybean plants from the detrimental effects of cadmium and lead stress. Therefore, metal bioaccumulating bacterium P. putida KNP9 inoculation in soybean is a promising strategy for soybean growth enhancement, which could be utilized for enhanced biodiesel production from soybean at metal-contaminated sites.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3