Thermal Decomposition Processes in Relation to the Type of Organic Matter, Mineral and Maceral Composition of Menilite Shales

Author:

Labus Małgorzata1ORCID,Matyasik Irena2ORCID,Ziemianin Konrad2

Affiliation:

1. Institute for Applied Geology, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland

2. Oil and Gas Institute—National Research Institute, 25A Lubicz St., 31-503 Kraków, Poland

Abstract

The aim of the research presented in this article was to analyse the processes of source-rock decomposition, including kinetic parameters of pyrolysis, in relation to the type of the organic matter and its maturity. The examined source rocks were Menilite shales from several units within the Flysch Carpathians (Poland). The samples were analysed with use of thermal methods, including Rock-Eval and thermogravimetry coupled with an FTIR detector. Kinetic parameters were determined with use of the model-free integral isoconversion method Kissinger–Akahira–Sunose. The observed gas evolution from the source rocks indicates two stages of organic matter decomposition for some samples. The main stage of pyrolysis takes place in the temperature range from 300 to 500 °C, while the secondary—cracking—takes place in the temperature range from 500 to 650 °C. Using FTIR, we detected vibrations derived from N-H groups, which provide information on the presence of nitrogen in the organic matter, and indicate a low maturity level. C=C stretching vibrations of aromatic hydrocarbons prove a higher maturity of organic matter. The Menilite source rocks have different activation energies, which are related to different organic and mineral compositions. The maturity of organic matter does not have a decisive influence on the kinetic parameters. A high share of carbonates in the rock increases the value of the apparent activation energy. The high share of bituminite within maceral components reduces the value of activation energy.

Funder

National Centre for Research and Development (NCBiR) in frames of INGA Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3