A Bi-Level Optimal Operation Model for Small-Scale Active Distribution Networks Considering the Coupling Fluctuation of Spot Electricity Prices and Renewable Energy Sources

Author:

Shi Yu1,Lv Fei23,Gao Xuefeng1,Jiang Minglei1,Luo Huan23,Xu Ruhang23ORCID

Affiliation:

1. Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China

2. School of Economics and Management, North China Electric Power University, Beijing 102206, China

3. Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China

Abstract

As the penetration rate of variable renewable energy such as wind power increases in the power system, the composition and balance of the system also change gradually. The intermittency of renewable energy poses great stability challenges to the traditional centralized generation and load-oriented transmission and distribution methods. Therefore, the Active Distribution Network Operator (ADNO) with distributed installation at the local level has a good application prospect in the new scenario. However, ADNO needs to improve its operational efficiency based on the types of local generation and storage devices and the nature of the market environment. To address this issue, this paper proposes a forecasting method that considers the coupling fluctuations of spot electricity prices and renewable energy, and a bi-level optimization operation method based on the Stackelberg game for optimizing the operation of small-scale ADNO under high wind power penetration rate. Simulation results show that the proposed methods achieve greater positive impact on the operational efficiency of ADNO than conventional methods. In addition, the proposed methods ensure the long-term profitability of ADNO, even with fluctuations in external factors.

Funder

State Grid Jilin Electric Power Co., Ltd. 2022 science and technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3