Abstract
In the proton exchange membrane fuel cell (PEMFC) system, the flow of air and hydrogen is the main factor influencing the output characteristics of PEMFC, and there is a coordination problem between their flow controls. Thus, the integrated controller of the PEMFC gas supply system based on distributed deep reinforcement learning (DDRL) is proposed to solve this problem, it combines the original airflow controller and hydrogen flow controller into one. Besides, edge-cloud collaborative multiple tricks distributed deep deterministic policy gradient (ECMTD-DDPG) algorithm is presented. In this algorithm, an edge exploration policy is adopted, suggesting that the edge explores including DDPG, soft actor-critic (SAC), and conventional control algorithm are employed to realize distributed exploration in the environment, and a classified experience replay mechanism is introduced to improve exploration efficiency. Moreover, various tricks are combined with the cloud centralized training policy to address the overestimation of Q-value in DDPG. Ultimately, a model-free integrated controller of the PEMFC gas supply system with better global searching ability and training efficiency is obtained. The simulation verifies that the controller enables the flows of air and hydrogen to respond more rapidly to the changing load.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献