Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes

Author:

Smith Crystal N.,Hagan Donald L.

Abstract

The immediate effects of wildland fire on soil have been well documented. However, we know much less about the longer-term effects and their implications for plants. Post-fire soil temperature regimes, for example, have received relatively little research attention, despite potential effects on plant phenology and establishment. Using portable temperature datalogger units (iButtons), we conducted an experimental study to assess how fire severity (measured in terms of litter and duff consumption) influences biologically relevant temperature parameters such as diel minimums, maximums, means, and ranges. We also used these data to calculate cumulative soil growing degree days (GDDs). The study was conducted during the early to mid-spring to capture the transition from dormant season to growing season. Results indicate that mean and max soil temperatures increase in the weeks after fire, with the most pronounced effects in the higher severity treatments. By the end of the 40-day study period, soils in the high severity burn treatment had accumulated 72 GDDs, compared to 17.9, 13.6, and 1.4 in moderate, low, and control treatments, respectively. These findings indicate that fire severity has significant and persistent effects on post-fire soil temperature regimes, and this likely has implications for the post-fire vegetation response.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3