Projected Impact of Mid-21st Century Climate Change on Wildfire Hazard in a Major Urban Watershed outside Portland, Oregon USA

Author:

McEvoy AndyORCID,Nielsen-Pincus MaxORCID,Holz AndrésORCID,Catalano Arielle J.,Gleason Kelly E.

Abstract

Characterizing wildfire regimes where wildfires are uncommon is challenged by a lack of empirical information. Moreover, climate change is projected to lead to increasingly frequent wildfires and additional annual area burned in forests historically characterized by long fire return intervals. Western Oregon and Washington, USA (westside) have experienced few large wildfires (fires greater than 100 hectares) the past century and are characterized to infrequent large fires with return intervals greater than 500 years. We evaluated impacts of climate change on wildfire hazard in a major urban watershed outside Portland, OR, USA. We simulated wildfire occurrence and fire regime characteristics under contemporary conditions (1992–2015) and four mid-century (2040–2069) scenarios using Representative Concentration Pathway (RCP) 8.5. Simulated mid-century fire seasons expanded in most scenarios, in some cases by nearly two months. In all scenarios, average fire size and frequency projections increased significantly. Fire regime characteristics under the hottest and driest mid-century scenarios illustrate novel disturbance regimes which could result in permanent changes to forest structure and composition and the provision of ecosystem services. Managers and planners can use the range of modeled outputs and simulation results to inform robust strategies for climate adaptation and risk mitigation.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3