Functional Diversity of Soil Microorganisms and Influencing Factors in Three Typical Water-Conservation Forests in Danjiangkou Reservoir Area

Author:

Yao Zengwang,Zhang Xudong,Wang Xu,Shu Qi,Liu Xinmiao,Wu Hailong,Gao Shenghua

Abstract

As a key part of the forest ecosystem, soil microorganisms play extremely important roles in maintaining the ecological environment and the security of water quality in reservoir areas. However, it is not clear whether there are differences in the functional diversity of soil microorganisms in different types of water-conservation forests in reservoir areas, and which factors affect the functional diversity of soil microorganisms. In our study, the Biolog-Eco microplate technique was used to analyze the carbon source metabolic characteristics of soil microbial communities in three typical water-conservation forests and a non-forest land: Pinus massoniana-Quercus variabilis mixed forest (MF), Pinus massoniana forest (PF), Quercus variabilis forest (QF) and non-forest land (CK). The results showed that the average well color development (AWCD), the Shannon diversity index (SDI) and the richness index (S) of the three forest lands was significantly greater than that of the non-forest land (p < 0.05). The mean values of AWCD, SDI and S of the three forests had the same order (QF > PF > MF), but there was no significant difference among different types of forests. The microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) of QF and PF were higher than those of MF and CK, but the microbial biomass C/N ratio (MBC/MBN) was lower. The variance partitioning analysis (VPA) showed that 86.4% of the variation was explained by plant (community) diversity, soil physical and chemical properties and soil microbial biomass, which independently explained 10.0%, 28.9%, and 14.9% of the variation, respectively. The redundancy analysis (RDA) showed that total phosphorus (TP), microbial biomass carbon (MBC), total nitrogen (TN), number of plant species (Num) and alkali-hydro nitrogen (Wn) were the key factors affecting the functional diversity of soil microorganisms. This study confirmed that forest ecosystem is better than non-forest land in maintaining soil microbial function diversity. Moreover, Quercus variabilis forest may be a better stand type in maintaining the diversity of soil microbial functions in the study area.

Funder

National Key Reasearch and Development Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3