Using the Error-in-Variable Simultaneous Equations Approach to Construct Compatible Estimation Models of Forest Inventory Attributes Based on Airborne LiDAR

Author:

Li ChunganORCID,Yu ZhuORCID,Zhou Xiangbei,Zhou Mei,Li Zhen

Abstract

Airborne LiDAR has been extensively used for estimating and mapping forest attributes at various scales. However, most models have been developed separately and independently without considering the intrinsic mathematical relationships and correlations among the estimates, which results in the mathematical and biophysical incompatibility of the estimates. In this paper, using the measurement error model approach, the error-in-variable simultaneous equation (SEq) for airborne LiDAR-assisted estimations of four forest attributes (stand volume, V; basal area, G; mean stand height, H; and diameter at breast height, D) for four forest types (Chinese fir, pine, eucalyptus, and broad-leaved forest) is developed and compared to the independence models (IMs). The results indicated that both the SEqs and IMs performed well, and the rRMSEs of the SEqs were slightly larger than those of the IMs, while the increases in rRMSE were less than 2% for the SEqs. There were statistically significant differences (α = 0.05) in the means of the estimates between SEqs and IMs, even though their average differences were less than ±1.0% for most attributes. There were no statistically significant differences in the mean estimates between SEqs, except for the estimates of the D and G of the eucalyptus forest. The SEqs with H and G as the endogenous variables (EVs) to estimate V performed slightly better than other SEqs in the fir, pine, and broad-leaved forests. The SEq that used D, H, and V as the EVs for estimating G was best in the eucalyptus forests. The SEq ensures the definite mathematical relationship among the estimates of forest attributes is maintained, which is consistent with forest measurement principles and therefore facilitates forest resource management applications, which is an issue that needs to be addressed for airborne LIDAR forest parameter estimation.

Funder

Forest Department of Guangxi Zhuang Autonomous Region, China

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

1. FAO (2020). Global Forest Resources Assessment 2020: Main Report, FAO.

2. Predicting forest stand characteristics with airborne scanning lidar;Means;Photogramm. Eng. Remote Sens.,2000

3. Above-ground biomass estimation from LiDAR data using random forest algorithms;Bastarrika;J. Comput. Sci.,2022

4. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends;Coops;Remote Sens. Environ.,2021

5. Advances and emerging issues in national forest inventories;McRoberts;Scand. J. For. Res.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3