A Multi-Carrier Waveform Design for 5G and beyond Communication Systems

Author:

Baig ImranORCID,Farooq Umer,Hasan Najam Ul,Zghaibeh Manaf,Jeoti Varun

Abstract

The next generation communication network (NGCN) is expected to provide higher spectral efficiency, low latency, large throughput and massive machine-to-machine type communications. In this regard, the design of the multi-carrier waveform (MCW) is posing a major research problem for the NGCN. To overcome the stated problem, a lot of state-of-the-art work exists that proposes various MCW alternative to the standard orthogonal frequency division multiplexing (OFDM) waveform. It is true that OFDM was used in a number of real-time communication systems of fourth generation (4G) networks. However, their use in the upcoming fifth generation (5G) network is not very feasible. This is because of the strict requirements of 5G communication systems, which also extend beyond 5G systems; hence rendering the use of OFDM infeasible for newer communication standards. To satisfy the requirements of upcoming communication networks, there is a dire need for MCWs with better flexibility. In this regard, a precoding-based MCW has been proposed. The proposed MCW fulfills the requirements of the NGCN in terms of low peak-to-average power ratio (PAPR), high spectral efficiency and throughput. The MCW proposed in this work uses power-domain multiplexing such as non-orthogonal multiple access (NOMA) and phase rotation by using the selective mapping (SLM) and generalized chirp-like (GCL) precoding of the input signal to the universal filtered multi-carriers (UFMC) modulations. Statistical analysis of the PAPR is presented by using the complementary cumulative distribution function (CCDF). The MATLAB® simulations have been carried out to implement the CCDF of PAPR and results show that a PAPR gain of 5.4 dB is obtained when the proposed waveform is compared with the standard NOMA-UFMC waveform at clip rate of 10−3, using 4-QAM.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3