Abstract
The progressive iterative approximation (PIA) plays an important role in curve and surface fitting. By using the diagonally compensated reduction of the collocation matrix, we propose the preconditioned progressive iterative approximation (PPIA) to improve the convergence rate of PIA. For most of the normalized totally positive bases, we show that the presented PPIA can accelerate the convergence rate significantly in comparison with the weighted progressive iteration approximation (WPIA) and the progressive iterative approximation with different weights (DWPIA). Furthermore, we propose an inexact variant of the PPIA (IPPIA) to reduce the computational complexity of the PPIA. We introduce the inexact solver of the preconditioning system by employing some state-of-the-art iterative methods. Numerical results show that both the PPIA and the IPPIA converge faster than the WPIA and DWPIA, while the elapsed CPU times of the PPIA and IPPIA are less than those of the WPIA and DWPIA.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献