Abstract
This research presents the epileptic focus region localization during epileptic seizures by applying different signal processing and ensemble machine learning techniques in intracranial recordings of electroencephalogram (EEG). Multi-scale Principal Component Analysis (MSPCA) is used for denoising EEG signals and the autoregressive (AR) algorithm will extract useful features from the EEG signal. The performances of the ensemble machine learning methods are measured with accuracy, F-measure, and the area under the receiver operating characteristic (ROC) curve (AUC). EEG-based focus area localization with the proposed methods reaches 98.9% accuracy using the Rotation Forest classifier. Therefore, our results suggest that ensemble machine learning methods can be applied to differentiate the EEG signals from epileptogenic brain areas and signals recorded from non-epileptogenic brain regions with high accuracy.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献