Abstract
In this paper, we study the problem of constructing a fuzzy measure over a product space when fuzzy measures over the marginal spaces are available. We propose a definition of independence of fuzzy measures and introduce different ways of constructing product measures, analyzing their properties. We derive bounds for the measure on the product space and show that it is possible to construct a single product measure when the marginal measures are capacities of order 2. We also study the combination of real functions over the marginal spaces in order to produce a joint function over the product space, compatible with the concept of marginalization, paving the way for the definition of statistical indices based on fuzzy measures.
Funder
Spanish Ministry of Science and Innovation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献