Cooperative and Non-Cooperative Frameworks with Utility Function Design for Intermediate Deadline Assignment in Real-Time Distributed Systems

Author:

Lee JinkyuORCID

Abstract

In real-time distributed systems, it is important to provide offline guarantee for an upper-bound of each real-time task’s end-to-end delay, which has been achieved by assigning proper intermediate deadlines of individual real-time tasks at each node. Although existing studies have succeeded to utilize mathematical theories of distributed computation/control for intermediate deadline assignment, they have assumed that every task operates in a cooperative manner, which does not always hold for real-worlds. In addition, existing studies have not addressed how to exploit a trade-off between end-to-end delay fairness among real-time tasks and performance for minimizing aggregate end-to-end delays. In this paper, we recapitulate an existing cooperative distributed framework, and propose a non-cooperate distributed framework that can operate even with selfish tasks, each of which is only interested in minimizing its own end-to-end delay regardless of achieving the system goal. We then propose how to design utility functions that allow the real-time distributed system to exploit the trade-off. Finally, we demonstrate the validity of the cooperative and non-cooperative frameworks along with the designed utility functions, via simulations.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3