Numerical Investigation of Freely Falling Objects Using Direct-Forcing Immersed Boundary Method

Author:

You Cheng-Shu,Chern Ming-JyhORCID,Noor Dedy Zulhidayat,Horng Tzyy-Leng

Abstract

The fluid-structure interaction of solid objects freely falling in a Newtonian fluid was investigated numerically by direct-forcing immersed boundary (DFIB) method. The Navier–Stokes equations are coupled with equations of motion through virtual force to describe the motion of solid objects. Here, we rigorously derived the equations of motion by taking control-volume integration of momentum equation. The method was validated by a popular numerical test example describing the 2D flow caused by the free fall of a circular disk inside a tank of fluid, as well as 3D experimental measurements in the sedimentation of a sphere. Then, we demonstrated the method by a few more 2D sedimentation examples: (1) free fall of two tandem circular disks showing drafting, kissing and tumbling phenomena; (2) sedimentation of multiple circular disks; (3) free fall of a regular triangle, in which the rotation of solid object is significant; (4) free fall of a dropping ellipse to mimic the falling of a leaf. In the last example, we found rich falling patterns exhibiting fluttering, tumbling, and chaotic falling.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3