Electrostatic Capacity of a Metallic Cylinder: Effect of the Moment Method Discretization Process on the Performances of the Krylov Subspace Techniques

Author:

Versaci MarioORCID,Angiulli GiovanniORCID

Abstract

When a straight cylindrical conductor of finite length is electrostatically charged, its electrostatic potential ϕ depends on the electrostatic charge qe, as expressed by the equation L(qe)=ϕ, where L is an integral operator. Method of moments (MoM) is an excellent candidate for solving L(qe)=ϕ numerically. In fact, considering qe as a piece-wise constant over the length of the conductor, it can be expressed as a finite series of weighted basis functions, qe=∑n=1Nαnfn (with weights αn and N, number of the subsections of the conductor) defined in the L domain so that ϕ becomes a finite sum of integrals from which, considering testing functions suitably combined with the basis functions, one obtains an algebraic system Lmnαn=gm with dense matrix, equivalent to L(qe)=ϕ. Once solved, the linear algebraic system gets αn and therefore qe is obtainable so that the electrostatic capacitance C=qe/V, where V is the external electrical tension applied, can give the corresponding electrostatic capacitance. In this paper, a comparison was made among some Krylov subspace method-based procedures to solve Lmnαn=gm. These methods have, as a basic idea, the projection of a problem related to a matrix A∈Rn×n, having a number of non-null elements of the order of n, in a subspace of lower order. This reduces the computational complexity of the algorithms for solving linear algebraic systems in which the matrix is dense. Five cases were identified to determine Lmn according to the type of basis-testing functions pair used. In particular: (1) pulse function as the basis function and delta function as the testing function; (2) pulse function as the basis function as well as testing function; (3) triangular function as the basis function and delta function as the testing function; (4) triangular function as the basis function and pulse function as the testing function; (5) triangular function as the basis function with the Galerkin Procedure. Therefore, five Lmn and five pair qe and C were computed. For each case, for the resolution of Lmnαn=gm obtained, GMRES, CGS, and BicGStab algorithms (based on Krylov subspaces approach) were implemented in the MatLab® Toolbox to evaluate qe and C as N increases, highlighting asymptotical behaviors of the procedures. Then, a particular value for N is obtained, exploiting both the conditioning number of Lmn and considerations on C, to avoid instability phenomena. The performances of the exploited procedures have been evaluated in terms of convergence speed and CPU-times as the length/diameter and N increase. The results show the superiority of BcGStab, compared to the other procedures used, since even if the number of iterations increases significantly, the CPU-time decreases (more than 50%) when the asymptotic behavior of all the procedures is in place. This superiority is much more evident when the CPU-time of BicGStab is compared with that achieved by exploiting Gauss elimination and Gauss–Seidel approaches.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Field Computation by Moment Methods;Harrington,1968

2. Theory of Electromagnetic Wave Propagation;Papas,2005

3. Stabilizing the E-Field Integral Equation at the internal resonances through the computation of its numerical null space

4. The Generalized Method of Moments for Electromagnetic Boundary Integral Equations

5. Electrostatics;Jonassen,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3