Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions

Author:

Pham Hoang

Abstract

COVID-19, known as Coronavirus disease 2019, is caused by a coronavirus called SARS-CoV-2. As coronavirus restrictions ease and cause changes to social and business activities around the world, and in the United States in particular, including social distancing, reopening states, reopening schools, and the face mask mandates, COVID-19 outbreaks are on the rise in many states across the United States and several other countries around the world. The United States recorded more than 1.9 million new infections in July, which is nearly 36 percent of the more than 5.4 million cases reported nationwide since the pandemic began, including more than 170,000 deaths from the disease, according to data from Johns Hopkins University as of 16 August 2020. In April 2020, the author of this paper presented a model to estimate the number of deaths related to COVID-19, which assumed that there would be no significant change in the COVID-19 restrictions and guidelines in the coming days. This paper, which presents the evolved version of the previous model published in April, discusses a new explicit mathematical model that considers the time-dependent effects of various pandemic restrictions and changes related to COVID-19, such as reopening states, social distancing, reopening schools, and face mask mandates in communities, along with a set of selected indicators, including the COVID-19 recovered cases and daily new cases. We analyzed and compared the modeling results to two recent models based on several model selection criteria. The model could predict the death toll related to the COVID-19 virus in the United States and worldwide based on the data available from Worldometer. The results show the proposed model fit the data significantly better for the United States and worldwide COVID-19 data that were available on 16 August 2020. The results show very encouraging predictability that reflected the time-dependent effects of various pandemic restrictions for the proposed model. The proposed model predicted that the total number of U.S. deaths could reach 208,375 by 1 October 2020, with a possible range of approximately 199,265 to 217,480 deaths based on data available on 16 August 2020. The model also projected that the death toll could reach 233,840 by 1 November 2020, with a possible range of 220,170 to 247,500 American deaths. The modeling result could serve as a baseline to help decision-makers to create a scientific framework to quantify their guidelines related to COVID-19 affairs. The model predicted that the death toll worldwide related to COVID-19 virus could reach 977,625 by 1 October 2020, with a possible range of approximately 910,820 to 1,044,430 deaths worldwide based on data available on 16 August 2020. It also predicted that the global death toll would reach nearly 1,131,000 by 1 November 2020, with a possible range of 1,030,765 to 1,231,175 deaths. The proposed model also predicted that the global death toll could reach 1.47 million deaths worldwide as a result of the SARS CoV-2 coronavirus that causes COVID-19. We plan to apply or refine the proposed model in the near future to further study the COVID-19 death tolls for India and Brazil, where the two countries currently have the second and third highest total COVID-19 cases after the United States.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

1. On Estimating the Number of Deaths Related to Covid-19

2. Patch.comhttps://patch.com/new-jersey/oceancity/nj-coronavirus-update-gov-murphy-considers-curfew-31-new-cases

3. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak

4. CNNhttps://www.cnn.com/2020/08/02/health/us-coronavirus-sunday/index.html

5. Worldometershttps://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?#countries

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3