Stock Price Forecasting with Deep Learning: A Comparative Study

Author:

Shahi Tej BahadurORCID,Shrestha Ashish,Neupane Arjun,Guo WilliamORCID

Abstract

The long short-term memory (LSTM) and gated recurrent unit (GRU) models are popular deep-learning architectures for stock market forecasting. Various studies have speculated that incorporating financial news sentiment in forecasting could produce a better performance than using stock features alone. This study carried a normalized comparison on the performances of LSTM and GRU for stock market forecasting under the same conditions and objectively assessed the significance of incorporating the financial news sentiments in stock market forecasting. This comparative study is conducted on the cooperative deep-learning architecture proposed by us. Our experiments show that: (1) both LSTM and GRU are circumstantial in stock forecasting if only the stock market features are used; (2) the performance of LSTM and GRU for stock price forecasting can be significantly improved by incorporating the financial news sentiments with the stock features as the input; (3) both the LSTM-News and GRU-News models are able to produce better forecasting in stock price equally; (4) the cooperative deep-learning architecture proposed in this study could be modified as an expert system incorporating both the LSTM-News and GRU-News models to recommend the best possible forecasting whichever model can produce dynamically.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3