Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode

Author:

Shishkanova Tatiana V.1ORCID,Králík František1,Synytsya Alla1

Affiliation:

1. Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic

Abstract

Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are diagnostic markers of neuroblastoma. The purpose of this study was to understand the reason for the discrimination of structural analogues (VMA and HVA) onto a graphite electrode coated with an electrochemically oxidized urea derivative. Density functional theory calculations (DFT), FTIR spectroscopic measurements, and electrochemical impedance spectroscopic measurements were used in this work. Density functional theory calculations (DFT) were used to identify the most suitable binding sites of the urea derivative and to describe possible differences in its interaction with the studied analytes. The FTIR measurement indicated the enhancement and disappearance of NH vibrations on graphite and platinum surfaces, respectively, that could be connected to a different orientation and thus provide accessibility of the urea moiety for the discrimination of carboxylates. Additionally, the higher the basicity of the anion, the stronger the hydrogen-bonding interaction with –NH-groups of the urea moiety: VMA (pKb = 10.6, KAds = (5.18 ± 1.95) × 105) and HVA (pKb = 9.6, KAds = (4.78 ± 1.58) × 104). The differential pulse voltammetric method was applied to detect VMA and HVA as individual species and interferents. As individual analytes, both HVA and VMA can be detected at a concentration of 1.99 × 10−5 M (RSD ≤ 0.28, recovery 110–115%).

Funder

Ministry of Education, Youth and Sports of the Czech Republic, UCT Prague, CZ

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3