Sound of Daily Living Identification Based on Hierarchical Situation Audition

Author:

Wu Jiaxuan12ORCID,Feng Yunfei3ORCID,Chang Carl K.3ORCID

Affiliation:

1. School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110180, China

2. Science and Technology Development Corporation, Shenyang Ligong University, Shenyang 110180, China

3. Department of Computer Science, Iowa State University, Ames, IA 50011, USA

Abstract

One of the key objectives in developing IoT applications is to automatically detect and identify human activities of daily living (ADLs). Mobile phone users are becoming more accepting of sharing data captured by various built-in sensors. Sounds detected by smartphones are processed in this work. We present a hierarchical identification system to recognize ADLs by detecting and identifying certain sounds taking place in a complex audio situation (AS). Three major categories of sound are discriminated in terms of signal duration. These are persistent background noise (PBN), non-impulsive long sounds (NILS), and impulsive sound (IS). We first analyze audio signals in a situation-aware manner and then map the sounds of daily living (SDLs) to ADLs. A new hierarchical audible event (AE) recognition approach is proposed that classifies atomic audible actions (AAs), then computes pre-classified portions of atomic AAs energy in one AE session, and finally marks the maximum-likelihood ADL label as the outcome. Our experiments demonstrate that the proposed hierarchical methodology is effective in recognizing SDLs and, thus, also in detecting ADLs with a remarkable performance for other known baseline systems.

Funder

General Young Talents Project for Scientific Research grant of the Educational Department of Liaoning Province

Research Support Program for Inviting High-Level Talents grant of Shenyang Ligong University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3