Integrating the Living Wall with Mechanical Ventilation to Improve Indoor Thermal Environment in the Transition Season

Author:

Liu Fudan1,Meng Xi1

Affiliation:

1. Innovation Institute for Sustainable Maritime Architecture Research and Technology (ISMART), Qingdao University of Technology, Qingdao 266033, China

Abstract

A living wall, when integrated with a mechanical ventilation system, can effectively improve the indoor thermal environment and reduce indoor CO2 concentration during the transition season. In this study, a control experiment was conducted to analyze the effect of a living wall integrated with mechanical ventilation (LW-V) on indoor air quality. During the experiment, indoor air temperature, relative humidity, indoor air speed, and CO2 concentration were measured, while the skin temperature was monitored and subjective questionnaires were administered to 60 subjects. The results show that the indoor environment was effectively improved by employing the LW-V system, with the average indoor temperature decreasing by 1.45 °C, while relative humidity increased by 19.1%. Due to the plant photosynthesis, CO2 concentrations were reduced by 13.83 ppm. Meanwhile, the mean skin temperature was reduced by 0.18 °C and was closer to the neutral mean skin temperature. Questionnaire analysis reveals the LW-V system improved overall air freshness sensation and thermal comfort level by 1.09 and 0.53, respectively. The LW-V system improved the indoor thermal environment as well as air quality during the transition season significantly.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3