An Adjustable Wireless Backhaul Link Selection Algorithm for LEO-UAV-Sensor-Based Internet of Remote Things Network

Author:

Chen Rui12ORCID,Wang Wennai1,Wu Wei1

Affiliation:

1. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210049, China

2. Jiangsu Broadcasting Corporation, Nanjing 210008, China

Abstract

Internet of Remote Things (IoRT) networks utilize the backhaul links between unmanned aerial vehicles (UAVs) and low-earth-orbit (LEO) satellites to transfer the massive data collected by sensors. However, the backhaul links change rapidly due to the fast movement of both the UAVs and the satellites, which is different from conventional wireless networks. Additionally, due to the various requirements of IoRT multiservices, the system performance should be comprehensively considered. Thus, an adjustable wireless backhaul link selection algorithm for a LEO-UAV-sensor-based IoRT network is proposed. Firstly, an optimization model for backhaul link selection is proposed. This model uses Q, which integrates the remaining service time and capacity as the objective function. Then, based on the snapshot method, the dynamic topology is converted into the static topology and a heuristic optimization algorithm is proposed to solve the backhaul link selection problem. Finally, the proposed algorithm is compared with two traditional algorithms, i.e., maximum service time and maximum capacity algorithms. Numerical simulation results show that the proposed model can achieve better system performance, and the overload of the satellites is more balanced. The algorithm can obtain a trade-off between remaining service time and capacity by dynamically adjusting model parameters. Thus, the adjustable backhaul link selection algorithm can apply to multiservice IoRT scenarios.

Funder

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3