Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte

Author:

Hu QianyuORCID,Chen KunfengORCID,Liu Fei,Zhao Mengying,Liang Feng,Xue DongfengORCID

Abstract

Traditionally, the discovery of new materials has often depended on scholars’ computational and experimental experience. The traditional trial-and-error methods require many resources and computing time. Due to new materials’ properties becoming more complex, it is difficult to predict and identify new materials only by general knowledge and experience. Material prediction tools based on machine learning (ML) have been successfully applied to various materials fields; they are beneficial for modeling and accelerating the prediction process for materials that cannot be accurately predicted. However, the obstacles of disciplinary span led to many scholars in materials not having complete knowledge of data-driven materials science methods. This paper provides an overview of the general process of ML applied to materials prediction and uses solid-state electrolytes (SSE) as an example. Recent approaches and specific applications to ML in the materials field and the requirements for building ML models for predicting lithium SSE are reviewed. Finally, some current obstacles to applying ML in materials prediction and prospects are described with the expectation that more materials scholars will be aware of the application of ML in materials prediction.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3