Study of Bulk Amorphous and Nanocrystalline Alloys Fabricated by High-Sphericity Fe84Si7B5C2Cr2 Amorphous Powders at Different Spark-Plasma-Sintering Temperatures

Author:

Dong Yannan,Liu Jiaqi,Wang PuORCID,Zhao Huan,Pang Jing,Li Xiaoyu,Zhang Jiaquan

Abstract

The new generation of high-frequency and high-efficiency motors has high demands on the soft magnetic properties, mechanical properties and corrosion resistance of its core materials. Bulk amorphous and nanocrystalline alloys not only meet its performance requirements but also conform to the current technical concept of integrated forming. At present, spark plasma sintering (SPS) is expected to break through the cooling-capacity limitation of traditional casting technology with high possibility to fabricate bulk metallic glasses (BMGs). In this study, Fe84Si7B5C2Cr2 soft magnetic amorphous powders with high sphericity were prepared by a new atomization technology, and its characteristic temperature was measured by DSC to determine the SPS temperature. The SEM, XRD, VSM and universal testing machine were used to analyze the compacts at different sintering temperatures. The results show that the powders cannot be consolidated by cold pressing (50 and 500 MPa) or SPS temperature below 753 K (glass transition temperature Tg = 767 K), and the tap density is only 4.46 g·cm−3. When SPS temperature reached above 773 K, however, the compact could be prepared smoothly, and the density, saturation magnetization, coercivity and compressive strength of the compacts increased with the elevated sintering temperature. In addition, due to superheating, crystallization occurred even when the sintering temperature was lower than 829 K (with the first crystallization onset temperature being Tx1 = 829 K). The compact was almost completely crystallized at 813 K, resulting in a sharp increase in the coercivity of the compact from 55.55 A·m−1 at 793 K to 443.17 A·m−1. It is noted that the nanocrystals kept growing in size as the temperature increased to 833 K, which increased the coercivity remarkably but showed an enhanced saturation magnetization.

Funder

Key research and development project of Shandong province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3