Abstract
PVAH is a mixture of solid and fluid, but its mechanical behavior has usually been described using solid material models. The purpose of this study was to obtain material properties that can reflect the mechanical behavior of polyvinyl alcohol hydrogel (PVAH) using finite element analysis, a biphasic continuum model, and to optimize the composition ratio of PVAH to replace the nucleus pulposus (NP) of the human intervertebral disc. Six types of PVAH specimens (3, 5, 7, 10, 15, 20 wt%) were prepared, then unconfined compression experiments were performed to acquire their material properties using the Holmes–Mow biphasic model. With an increasing weight percentage of PVA in PVAH, the Young’s modulus increased while the permeability parameter decreased. The Young’s modulus and permeability parameter were similar to those of the NP at 15 wt% and 20 wt%. The range of motion, facet joint force, and NP pressures measured from dynamic motional analysis of the lumbar segments with the NP model also exhibited similar values to those with 15~20 wt% PVAH models. Considering the structural stability and pain of the lumbar segments, it appears that 20 wt% PVAH is most suitable for replacing the NP.
Funder
National Research Foundation of Korea
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献