Abstract
This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Reference53 articles.
1. High Performance Fiber Reinforced Cement Composites,1996
2. Half a Century of Progress Leading to Ultra-High Performance Fiber Reinforced Concrete: Part 1-Overall Review;Naaman,2012
3. Twenty Years of FRC Tunnel Segments Practice: Lessons Learnt and Proposed Design Principles;Tiberti,2016
4. Crossrail project: use of sprayed concrete tunnel linings on London’s Elizabeth line
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献