RT-CBAM: Refined Transformer Combined with Convolutional Block Attention Module for Underwater Image Restoration

Author:

Ye Renchuan1,Qian Yuqiang1,Huang Xinming1

Affiliation:

1. Department of Electronic Information Engineering, School of Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

Recently, transformers have demonstrated notable improvements in natural advanced visual tasks. In the field of computer vision, transformer networks are beginning to supplant conventional convolutional neural networks (CNNs) due to their global receptive field and adaptability. Although transformers excel in capturing global features, they lag behind CNNs in handling fine local features, especially when dealing with underwater images containing complex and delicate structures. In order to tackle this challenge, we propose a refined transformer model by improving the feature blocks (dilated transformer block) to more accurately compute attention weights, enhancing the capture of both local and global features. Subsequently, a self-supervised method (a local and global blind-patch network) is embedded in the bottleneck layer, which can aggregate local and global information to enhance detail recovery and improve texture restoration quality. Additionally, we introduce a multi-scale convolutional block attention module (MSCBAM) to connect encoder and decoder features; this module enhances the feature representation of color channels, aiding in the restoration of color information in images. We plan to deploy this deep learning model onto the sensors of underwater robots for real-world underwater image-processing and ocean exploration tasks. Our model is named the refined transformer combined with convolutional block attention module (RT-CBAM). This study compares two traditional methods and six deep learning methods, and our approach achieved the best results in terms of detail processing and color restoration.

Funder

National Natural Science Foundation of China

Stable Supporting Fund of the National Key Laboratory of Underwater Acoustic Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3