Abstract
Inequality is an emergent property of complex systems. In catchments, variation in hydroclimatic conditions and biogeochemistry cause streamflow and constituent loads to exhibit strong temporal inequality, with most loads exported during “hot moments”. Achieving water-quality-restoration goals in a cost-effective manner requires targeted implementation of conservation practices in “hot spots” in the landscape and “hot moments” in time. While spatial targeting is commonly included in development of watershed management plans, the need for temporal targeting is often acknowledged, but no common way to address it has been established. Here, we implement a Lorenz Inequality decision-making framework that uses Lorenz Curves and Gini Coefficients to quantify the degree of temporal inequality exhibited by contaminant loads and demonstrate its utility for eight impaired catchments in the Chesapeake Bay watershed. The framework requires a load-reduction goal be set and then links the degree of temporal inequality in annual nutrient loads to the periods of time during which those loads could be targeted. These results are critical in guiding development of site-specific, cost-effective tools that facilitate load-reduction and water-quality goal attainment for individual catchments. The framework provides valuable insight into site-specific potentials for meeting load-reduction goals.
Funder
Pennsylvania State University
United States Department of Agriculture
Environmental Protection Agency
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献