Determination of Photothermal and EMI Shielding Efficiency of Graphene–Silver Nanoparticle Composites Prepared under Low-Dose Gamma Irradiation

Author:

Stefanović Andjela12,Kepić Dejan1ORCID,Momčilović Miloš1ORCID,Mead James L.3,Huskić Miroslav4ORCID,Haddadi Kamel5ORCID,Sebbache Mohamed5ORCID,Todorović Marković Biljana1ORCID,Jovanović Svetlana1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia

2. Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia

3. Department of Computing Science, University of Oldenburg, D-26129 Oldenburg, Germany

4. Faculty of Polymer Technology, Ozare 19, 2380 Slovenj Gradec, Slovenia

5. University of Lille, CNRS, University Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d’électronique de microélectronique et de nanotechnologie, F-59000 Lille, France

Abstract

Silver nanoparticles (Ag NPs) have been produced by low-dose (1–20 kGy) gamma irradiation of silver nitrate in the presence of graphene-based material (graphene oxide or electrochemically exfoliated graphene). The large surface area of those graphene-based materials combined with the presence of oxygen-containing functional groups on the surface provided successful nucleation and growth of Ag nanoparticles, which resulted in a uniformly covered graphene surface. The obtained Ag nanoparticles were spherical with a predominant size distribution of 10–50 nm for graphene oxide and 10–100 nm for electrochemically exfoliated graphene. The photothermal efficiency measurement showed a temperature increase upon exposure to a 532 nm laser for all samples and the highest photothermal efficiency was measured for the graphene oxide/Ag NP sample prepared at 5 kGy. Electromagnetic interference (EMI) shielding efficiency measurements showed poor shielding for the composites prepared with graphene oxide. On the other hand, all composites prepared with electrochemically exfoliated graphene showed EMI shielding to some extent, and the best performance was measured for the samples prepared at 5 and 20 kGy doses.

Funder

HORIZON EUROPE Framework Programme

Science Fund of the Republic of Serbia

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3