Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation

Author:

Cao Fangfang12,Du Liming3,Jiang Yongjie24,Gou Yangyang2,Liu Xirui12,Wu Haodong12,Zhang Junchuan24,Qiu Zhiheng24,Li Can3,Ye Jichun2ORCID,Li Zhen3,Xiao Chuanxiao25

Affiliation:

1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China

4. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230041, China

5. Ningbo New Materials Testing and Evaluation Center Co., Ltd., Ningbo 315201, China

Abstract

Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.

Funder

National Natural Science Foundation of China

the Key Research and Development Program of Ningbo City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3