Electrochemical Detection of Glyphosate in Surface Water Samples Based on Modified Screen-Printed Electrodes

Author:

Geana Elisabeta-Irina1ORCID,Ciucure Corina Teodora1,Soare Amalia1,Enache Stanica1,Ionete Roxana Elena1ORCID,Dinu Livia Alexandra2ORCID

Affiliation:

1. National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania

2. National Institute for Research and Development in Microtechnologies (IMT Bucharest), 077190 Voluntari, Romania

Abstract

This study addresses the necessity to monitor the presence of glyphosate (Gly) in waters, highlighting the need for on-site detection of Gly by using electrochemical sensors in environmental and agricultural monitoring programs. Two approaches were employed: (1) modification with graphene decorated with gold nanoparticles (AuNPs-Gr) and dispersed in either dimethylformamide (DMF) or a solution containing Nafion and isopropanol (NAF), and (2) molecularly imprinted polymers (MIPs) based on polypyrrole (PPy) deposited on gold SPEs (AuSPE). Electrochemical characterization revealed that sensors made of AuNPs-Gr/SPCE exhibited enhanced conductivity, larger active area, and improved charge transfer kinetics compared to unmodified SPEs and SPEs modified with graphene alone. However, the indirect detection mechanism of Gly via complex formation with metallic cations in AuNPs-Gr-based sensors introduces complexities and compromises sensitivity and selectivity. In contrast, MIPPy/AuSPE sensors demonstrated superior performance, offering enhanced reliability and sensitivity for Gly analysis. The MIPPy/AuSPE sensor allowed the detection of Gly concentrations as low as 5 ng/L, with excellent selectivity and reproducibility. Moreover, testing in real surface water samples from the Olt River in Romania showed recovery rates ranging from 90% to 99%, highlighting the effectiveness of the detection method. Future perspectives include expanding the investigation to monitor Gly decomposition in aquatic environments over time, providing insights into the decomposition’s long-term effects on water quality and ecosystem health, and modifying regulatory measures and agricultural practices for mitigating its impact. This research contributes to the development of robust and reliable electrochemical sensors for on-site monitoring of Glyphosate in environmental and agricultural settings.

Funder

Ministry of Research, Innovation and Digitization

UEFISCDI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3