A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation

Author:

Guo Weiqing1,Wei Qianhui1,Li Gangrong1,Wei Feng1,Hu Zhuofeng2

Affiliation:

1. GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China

2. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China

Abstract

Creating oxygen vacancy in tungsten trioxide (WO3) has been considered as an effective strategy to improve the photocatalytic performance for degrading organic pollutants. In this study, oxygen vacancies were introduced into WO3 by thermal treatment under Ar atmosphere and their proportion was changed by setting different treatment times. WO3−x samples show better photoelectric properties and photocatalytic degradation performance for carbamazepine (CBZ) than an oxygen-vacancy-free sample, and WO3−x with the optimal proportion of oxygen vacancies is obtained by thermal treatment for 3 h in 550 °C. Furthermore, it discovers that the surface oxygen vacancies on WO3−x would be recovered when it is exposed to air, resulting in a bulk oxygen vacancy dominating WO3−x (bulk-WO3−x). The bulk-WO3−x exhibited much higher degradation efficiency for CBZ than WO3−x with both surface and bulk oxygen vacancies. The mechanism study shows bulk-WO3−x mainly degrades the CBZ by producing OH radicals and superoxide radicals, while oxygen-vacancy-free sample mainly oxidizes the CBZ by the photoexcited hole, which requires the CBZ to be adsorbed on the surface for degradation. The radical generated by bulk-WO3−x exhibits stronger oxidizing capacity by migrating to the solution for CBZ degradation. In summary, the influence of oxygen vacancy on photocatalytic degradation performance depends on both the proportion and location distribution and could lie in the optimization of the photodegradation mechanism. The results of this study could potentially broaden our understanding of the role of oxygen vacancies and provide optimal directions and methods for oxygen vacancy regulation for photocatalysts.

Funder

Key-Area Research and Development Program of Guangdong Province

Guangdong high level Innovation Research Institute

Youth Foundation of China GRINM Group Corporation Limited

Guangzhou Basic and Applied Basic Research Foundation, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3