SnS Quantum Dots Enhancing Carbon-Based Hole Transport Layer-Free Visible Photodetectors

Author:

Zhang Rui1,Li Jing1,Liao Sainan1,Huang Shuxin1,Shen Chenguang1,Chen Mengwei1,Yang Yingping1ORCID

Affiliation:

1. Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China

Abstract

The recombination of charges and thermal excitation of carriers at the interface between methylammonium lead iodide perovskite (PVK) and the carbon electrode are crucial factors that affect the optoelectronic performance of carbon-based hole transport layer (HTL)-free perovskite photodetectors. In this work, a method was employed to introduce SnS quantum dots (QDs) on the back surface of perovskite, which passivated the defect states on the back surface of perovskite and addressed the energy-level mismatch issue between perovskite and carbon electrode. Performance testing of the QDs and the photodetector revealed that SnS QDs possess energy-level structures that are well matched with perovskite and have high absorption coefficients. The incorporation of these QDs into the interface layer effectively suppresses the dark current of the photodetector and greatly enhances the utilization of incident light. The experimental results demonstrate that the introduction of SnS QDs reduces the dark current by an order of magnitude compared to the pristine device at 0 V bias and increases the responsivity by 10%. The optimized photodetector exhibits a wide spectral response range (350 nm to 750 nm), high responsivity (0.32 A/W at 500 nm), and high specific detectivity (>1 × 1012 Jones).

Funder

National Nature Science Foundation of China

Hubei Provincial Teaching Reform Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3