Studying the Process of Phosphogypsum Recycling into a Calcium Sulphide-Based Luminophor

Author:

Medennikov Oleg A.1,Egorova Marina A.1,Shabelskaya Nina P.1ORCID,Rajabov Asatullo1,Sulima Sergey I.2,Sulima Elena V.2,Khliyan Zlatislava D.1,Monastyrskiy Daniil I.1

Affiliation:

1. Department of Ecology and Industrial Safety, Faculty of Technology, Platov South-Russian State Polytechnic University (NPI), Novocherkassk 346428, Russia

2. Department of Chemical Technologies, Faculty of Technology, Platov South-Russian State Polytechnic University (NPI), Novocherkassk 346428, Russia

Abstract

Currently, one of the most important problems of environmental protection is the deep and complex processing of mineral raw materials. This problem is especially relevant when processing substandard ores and production waste, one of which is phosphogypsum. This study examines the process of CaSO4/CaS composite material formation during the reduction of phosphogypsum with citric acid. The composite structure formation mechanism is proposed. The resulting materials are characterized using various methods, including X-ray diffraction (XRD), transmission electron microscopy, the Scherrer method, thermogravimetric analysis (TGA), and FT-IR spectroscopy. The reduced sample emits orange radiation in the range of 500–750 nm with a quantum yield of 0.17. Experimental results showed that the sample decomposition process in the solid state consisted of two components with a predominant contribution from the long-lived component (~46 ns). The optimal conditions for producing luminescent materials by reducing phosphogypsum with citric acid were determined: a heat treatment temperature of 1073 K, a holding time of 60 min, and a reducing agent mole fraction of 37%. It was found that an increase in temperature with a simultaneous decrease in heat treatment time, as well as a decrease in temperature with a simultaneous increase in heat treatment time, led to a decrease in the luminescent properties of the synthesized material compared to optimal values. The results can be used to develop technology for recycling large-tonnage waste from the chemical industry into luminescent materials.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3