Genome-Wide Identification and Expression Profiling of the Response Regulator (RR) Gene Family in Pecan Reveals Its Possible Association with Callus Formation during Grafting

Author:

Zhang Yan12,Jia Zhanhui12,Wang Guoming12,Hou Mengxin12,Zhai Min12,Hu Longjiao12,Xuan Jiping13,Mo Zhenghai12

Affiliation:

1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China

3. Jiangsu Engineering Research Center for the Germplasm Innovation and Utilization of Pecan, Nanjing 210014, China

Abstract

Response regulator (RR) is the core component of cytokinin (CK) signaling, and it regulates the expression of numerous downstream CK-responsive genes. However, the knowledge regarding the pecan RR (CiRR) gene family is still limited. In this study, we first monitored trans-zeatin riboside (tZR) content in the graft union 0, 7, 14, and 32 days after grafting and then conducted genome-wide analysis and expression profiling of the CiRR gene family using an available genome sequence and RNA-seq dataset, aiming to better understand the roles of CK during pecan grafting. The dynamic contents of tZR showed an increased trend during the specific period for both the scion and rootstock. There were 20 CiRRs in the pecan genome, including 12 type A CiRRs, 5 type B members, and 3 type C genes. All members contained a receiver domain and type B CiRRs possessed an additional Myb-like DNA-binding domain. Promoter analysis showed that the CiRR gene family contained cis-elements associated with growth and development, hormones, and stress. A total of 10 genes, including CiRR18/9/4a/14a/12c/5/12b/14b/2b/2a, were abundantly expressed in the samples of different tissues, drought stress, and kernel development. There were 12 genes (CiRR5/18/4a/12b/2b/12c/14b/2a/14a/4b/9/11a) showing active expressions during grafting, and weighted gene co-expression network analysis (WGCNA) grouped them into six modules. Among them, CiRR14a and CiRR12b were the hub genes for the turquoise and brown modules, respectively. Functional annotation indicated that the turquoise module was associated with gene transcription and translation, while the brown module was related to cell proliferation. Our results suggest that the CiRR gene family central to CK signaling is probably involved in callus formation during pecan grafting.

Funder

Central Government Demonstration Project of Forestry Science and Technology

National Natural Science Foundation of China

Key Research and Development Program of Jiangxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3