Abstract
The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.
Funder
National Cancer Institute
National Institute of Neurological Disorders and Stroke
United States Department of Veterans Affairs
Subject
Virology,Infectious Diseases
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献