Abstract
. Over the past ten years, diabetes has rapidly become more prevalent in all age demographics and especially in children. Improved dietary assessment techniques are necessary for epidemiological studies that investigate the relationship between diet and disease. Current nutritional research is hindered by the low accuracy of traditional dietary intake estimation methods used for portion size assessment. This paper presents the development and validation of a novel instrumentation system for measuring accurate dietary intake for diabetic patients. This instrument uses a mobile Structured Light System (SLS), which measures the food volume and portion size of a patient’s diet in daily living conditions. The SLS allows for the accurate determination of the volume and portion size of a scanned food item. Once the volume of a food item is calculated, the nutritional content of the item can be estimated using existing nutritional databases. The system design includes a volume estimation algorithm and a hardware add-on that consists of a laser module and a diffraction lens. The experimental results demonstrate an improvement of around 40% in the accuracy of the volume or portion size measurement when compared to manual calculation. The limitations and shortcomings of the system are discussed in this manuscript.
Funder
Foundation for the National Institutes of Health
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献