Sticky Stock Market Analysts

Author:

Filiz IbrahimORCID,Judek Jan RenéORCID,Lorenz MarcoORCID,Spiwoks Markus

Abstract

Technological progress in recent years has made new methods available for making forecasts in a variety of areas. We examine the success of ex-ante stock market forecasts of three major stock market indices, i.e., the German Stock Market Index (DAX), the Dow Jones Industrial Index (DJI), and the Euro Stoxx 50 (SX5E). We test whether the forecasts prove true when they reach their effective dates and are therefore suitable for active investment strategies. We revive the thoughts of the American sociologist William Fielding Ogburn, who argues that forecasters consistently underestimate the variability of the future. In addition, we draw on some contemporary measures of forecast quality (prediction-realization diagram, test of unbiasedness, and Diebold–Mariano test). We reveal that (a) unusual events are underrepresented in the forecasts, (b) the dispersion of the forecasts lags behind that of the actual events, (c) the slope of the regression lines in the prediction-realization diagram is <1, (d) the forecasts are highly biased, and (e) the quality of the forecasts is not significantly better than that of naïve forecasts. The overall behavior of the forecasters can be described as “sticky” because their forecasts adhere too strongly to long-term trends in the indices and are thus characterized by conservatism.

Publisher

MDPI AG

Reference64 articles.

1. Forecast Quality Matrix: A Methodological Survey of Judging Forecast Quality of Capital Market Forecasts;Andres;Journal of Economics and Statistics,1999

2. Asset pricing under endogenous expectations in an artificial stock market;Arthur,1997

3. Contrarians, Extrapolators, and Stock Market Momentum and Reversalhttps://dx.doi.org/10.2139/ssrn.3722540

4. Forecasting stock market short-term trends using a neuro-fuzzy based methodology

5. Predictability in financial markets: What do survey expectations tell us?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3