Comparative Transcriptome Analysis between Embryogenic and Non-Embryogenic Callus of Davidia involucrata

Author:

Linghu Gaoman1ORCID,Yu Zhaoyou1,Li Meng1,Wang Anqi1,Kang Yongxiang1

Affiliation:

1. College of Forestry, Northwest A&F University, Yangling 712100, China

Abstract

Davidia involucrata Baill. (D. involucrata), a rare and endangered wild plant, is native to China and is globally recognized as an ornamental tree species. However, D. involucrata exhibits inherent biological characteristics that contribute to its low reproductive efficiency. To address this challenge, somatic embryogenesis, a biotechnological method, offers numerous advantages, including enhanced reproductive efficiency, a large reproductive coefficient, and a complete structural composition. Consequently, somatic embryogenesis holds significant value in the propagation and genetic improvement of this particular tree species. In a previous study, we utilized immature zygotic embryos of D. involucrata as explants and induced somatic embryogenesis from embryogenic callus, thereby establishing a rapid propagation and plant regeneration scheme. In this study, we utilized Illumina RNA sequencing to compare the transcriptomes of the embryogenic callus (EC) and non-embryogenic callus (NEC) of D. involucrata. The analysis revealed 131,109 unigenes assembled from EC and NEC, and 12,806 differentially expressed genes (DEGs) were identified. To verify the authenticity of the transcriptome sequencing results, qRT-PCR was performed and 16 DEGs were screened, with the stable reference gene UBQ being selected. Our analysis focused on genes related to plant growth regulators and somatic embryogenesis, such as the Aux, IAA, ARF, GH3, AHP, ARR, CYCD, BBM, WUS, GRF, SERK, and WOX gene families. We found that certain genes in these families were significantly upregulated in EC induction compared to NEC, indicating that they play crucial roles in D. involucrata cell proliferation, differentiation, and cell totipotency. These results offer new insights into the role of these gene families in EC, and may guide efforts to improve the somatic embryo induction, culture conditions, and genetic transformation efficiency of D. involucrata.

Funder

Shaanxi Academy of Forestry

Publisher

MDPI AG

Subject

Forestry

Reference60 articles.

1. Living characteristics of rare and endangered species—Davidia involucrata;Gang;J. For. Res.,2004

2. The current status of endemic and endangered species Davidia involucrata and the preserving strategies;Jinsheng;Biodivers. Sci.,1995

3. Studies on Chinese dovetree propagation and cultivation techniques;Jiaxun;J. Beijing For. Univ.,1995

4. Somatic embryogenesis: A model for early development in higher plants;Zimmerman;Plant Cell,1993

5. A highly efficient method for somatic embryogenesis of Kelussia odorotissima Mozaff., an endangered medicinal plant;Ebrahimi;Plant Cell Tissue Organ Cult. PCTOC,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3