Abstract
Signal denoising is one of the most important issues in signal processing, and various techniques have been proposed to address this issue. A combined method involving wavelet decomposition and multiscale principal component analysis (MSPCA) has been proposed and exhibits a strong signal denoising performance. This technique takes advantage of several signals that have similar noises to conduct denoising; however, noises are usually quite different between signals, and wavelet decomposition has limited adaptive decomposition abilities for complex signals. To address this issue, we propose a signal denoising method based on ensemble empirical mode decomposition (EEMD) and MSPCA. The proposed method can conduct MSPCA-based denoising for a single signal compared with the former MSPCA-based denoising methods. The main steps of the proposed denoising method are as follows: First, EEMD is used for adaptive decomposition of a signal, and the variance contribution rate is selected to remove components with high-frequency noises. Subsequently, the Hankel matrix is constructed on each component to obtain a higher order matrix, and the main score and load vectors of the PCA are adopted to denoise the Hankel matrix. Next, the PCA-denoised component is denoised using soft thresholding. Finally, the stacking of PCA- and soft thresholding-denoised components is treated as the final denoised signal. Synthetic tests demonstrate that the EEMD-MSPCA-based method can provide good signal denoising results and is superior to the low-pass filter, wavelet reconstruction, EEMD reconstruction, Hankel–SVD, EEMD-Hankel–SVD, and wavelet-MSPCA-based denoising methods. Moreover, the proposed method in combination with the AIC picking method shows good prospects for processing microseismic waves.
Funder
China Postdoctoral Science Foundation
Basic Scientific Research Operating Expenses of Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献