The Role of Hybrid Battery–SMES Energy Storage in Enriching the Permanence of PV–Wind DC Microgrids: A Case Study

Author:

Salama Hossam S.ORCID,Kotb Kotb M.ORCID,Vokony IstvanORCID,Dán András

Abstract

The superior access to renewable sources in modern power systems increases the fluctuations in system voltage and power. Additionally, the central dilemmas in using renewable energy sources (RESs) are the intermittent nature of and dependence on wind speed and solar irradiance for wind and photovoltaic (PV) systems, respectively. Therefore, utilizing a vigorous and effective energy storage system (ESS) with RESs is crucial to overcoming such challenges and dilemmas. This paper describes the impacts of using a battery storage system (BSS) and superconducting magnetic energy storage (SMES) system on a DC bus microgrid-integrated hybrid solar–wind system. The proposed method employs a combination of BSS and SMES to improve the microgrid stability during different events, such as wind variation, shadow, wind turbine (WT) connection, and sudden PV outage events. Distinct control approaches are proposed to control the system’s different components in order to increase overall system stability and power exchange. Both the PV and wind systems are further equipped with unique maximum power point tracking (MPPT) controllers. Additionally, each of the ESSs is controlled using a proposed control method to supervise the interchange of the active power within the system and to keep the DC bus voltage constant during the different examined instabilities. Furthermore, to maintain the load voltage /frequency constant, the prime inverter is controlled using the proposed inverter control unit. The simulation results performed with Matlab/Simulink show that the hybrid BSS + SMES system successfully achieves the main targets, i.e., DC voltage, interchange power, and load voltage/frequency are improved and smoothed out. Moreover, a comparison among three case studies is presented, namely without using ESSs, using the BSS only, and once more using both BSS and SMES systems. The findings prove the efficacy of the proposed control method based on the hybrid BSS + SMES approach over BSS only in preserving the modern power system’s stability and reliability during the variable events.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3