Affiliation:
1. Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
2. Department of Chemistry, GEC Campus, Indian Institute of Technology Bhilai, Sejbahar, Raipur 492015, India
3. Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
Abstract
Solid-state structural transformation is an interesting methodology used to prepare various metal–organic frameworks (MOFs) that are challenging to prepare in direct synthetic procedures. On the other hand, solid-state [2 + 2] photoreactions are distinctive methodologies used for light-driven solid-state transformations. Meanwhile, most of these photoreactions explored are quantitative in nature, in addition to them being stereo-selective and regio-specific in manner. In this work, we successfully synthesized two photoreactive novel binuclear Zn(II) MOFs, [Zn2(spy)2(tdc)2] (1) and [Zn2(spy)4(tdc)2] (2) (where spy = 4-styrylpyridine and tdc = 2,5-thiophenedicarboxylate) with different secondary building units. Both MOFs are interdigitated in nature and are 2D and 1D frameworks, respectively. Both the compounds showed 100% and 50% photoreaction upon UV irradiation, as estimated from the structural analysis for 1 and 2, respectively. This light-driven transformation resulted in the formation of 3D, [Zn2(rctt-ppcb)(tdc)2] (3), and 2D, [Zn2(spy)2(rctt-ppcb)(tdc)2] (4) (where rctt = regio, cis, trans, trans; ppcb = 1,3-bis(4′-pyridyl)-2,4-bis(phenyl)cyclobutane), respectively. These solid-state structural transformations were observed as an interesting post-synthetic modification. Overall, we successfully transformed novel lower-dimensional frameworks into higher-dimensional materials using a solid-state [2 + 2] photocycloaddition reaction.
Subject
General Materials Science,General Chemical Engineering