Doping-Free Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultra-Thin Emission Layer

Author:

Jang Eun-Bi1ORCID,Choi Geun-Su12,Bae Eun-Jeong12,Ju Byeong-Kwon2ORCID,Park Young-Wook1ORCID

Affiliation:

1. Nano and Organic-Electronics Laboratory, SunMoon University, Asan 31460, Republic of Korea

2. Display and Nanosystem Laboratory, Department of Electrical Engineering, Korea University, 145, Anam-ro, Seoul 02841, Republic of Korea

Abstract

We report the electroluminescence (EL) characteristics of blue ultra-thin emissive layer (U-EML) phosphorescent (PH) organic light-emitting diodes (OLED) and thermally activated delayed fluorescence (TADF) OLED. A variety of transport layer (TL) materials were used in the fabricated OLEDs. The well-known FIrpic and DMAC-DPS were used with a thickness of 0.3 nm, which is relatively thicker than the optimal thickness (0.15 nm) of the blue phosphorescent ultra-thin emissive layer to ensure sufficient energy transfer. While FIrpic showed overall high efficiency in various TLs, DMAC-DPS exhibited three times lower efficiency in limited TLs. To clarify/identify low efficiency and to improve the EL, the thickness of DMAC-DPS was varied. A significantly higher and comparable efficiency was observed with a thickness of 4.5 nm, which is 15 times thicker. This thickness was oriented from the TADF itself, which reduces quenching in a triplet–triplet annihilation compared to the PH process. The thinner optimal thickness compared with ~30 nm of fluorescent OLEDs suggests that there still is quenching taking place. We expect that the efficiency of TADF U-EML OLEDs can be enhanced through further research on controlling the exciton quenching using multiple U-EMLs with spacers and a novel material with a high energy transfer rate (ΔES-T).

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3