UCB-SEnMod: A Model for Analyzing Future Energy Systems with 100% Renewable Energy Technologies—Methodology

Author:

Blinn AlexanderORCID,te Heesen HenrikORCID

Abstract

While the contribution of renewable energy technologies to the energy system is increasing, so is its level of complexity. In addition to new types of consumer systems, the future system will be characterized by volatile generation plants that will require storage technologies. Furthermore, a solid interconnected system that enables the transit of electrical energy can reduce the need for generation and storage systems. Therefore, appropriate methods are needed to analyze energy production and consumption interactions within different system constellations. Energy system models can help to understand and build these future energy systems. However, although various energy models already exist, none of them can cover all issues related to integrating renewable energy systems. The existing research gap is also reflected in the fact that current models cannot model the entire energy system for very high shares of renewable energies with high temporal resolution (15 min or 1-h steps) and high spatial resolution. Additionally, the low availability of open-source energy models leads to a lack of transparency about exactly how they work. To close this gap, the sector-coupled energy model (UCB-SEnMod) was developed. Its unique features are the modular structure, high flexibility, and applicability, enabling it to model any system constellation and can be easily extended with new functions due to its software design. Due to the software architecture, it is possible to map individual buildings or companies and regions, or even countries. In addition, we plan to make the energy model UCB-SEnMod available as an open-source framework to enable users to understand the functionality and configuration options more easily. This paper presents the methodology of the UCB-SEnMod model. The main components of the model are described in detail, i.e., the energy generation systems, the consumption components in the electricity, heat, and transport sectors, and the possibilities of load balancing.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3