Physics-Based Proxy Modeling of CO2 Sequestration in Deep Saline Aquifers

Author:

Khanal Aaditya,Shahriar Md FahimORCID

Abstract

The geological sequestration of CO2 in deep saline aquifers is one of the most effective strategies to reduce greenhouse emissions from the stationary point sources of CO2. However, it is a complex task to quantify the storage capacity of an aquifer as it is a function of various geological characteristics and operational decisions. This study applies physics-based proxy modeling by using multiple machine learning (ML) models to predict the CO2 trapping scenarios in a deep saline aquifer. A compositional reservoir simulator was used to develop a base case proxy model to simulate the CO2 trapping mechanisms (i.e., residual, solubility, and mineral trapping) for 275 years following a 25-year CO2 injection period in a deep saline aquifer. An expansive dataset comprising 19,800 data points was generated by varying several key geological and decision parameters to simulate multiple iterations of the base case model. The dataset was used to develop, train, and validate four robust ML models—multilayer perceptron (MLP), random forest (RF), support vector regression (SVR), and extreme gradient boosting (XGB). We analyzed the sequestered CO2 using the ML models by residual, solubility, and mineral trapping mechanisms. Based on the statistical accuracy results, with a coefficient of determination (R2) value of over 0.999, both RF and XGB had an excellent predictive ability for the cross-validated dataset. The proposed XGB model has the best CO2 trapping performance prediction with R2 values of 0.99988, 0.99968, and 0.99985 for residual trapping, mineralized trapping, and dissolution trapping mechanisms, respectively. Furthermore, a feature importance analysis for the RF algorithm identified reservoir monitoring time as the most critical feature dictating changes in CO2 trapping performance, while relative permeability hysteresis, permeability, and porosity of the reservoir were some of the key geological parameters. For XGB, however, the importance of uncertain geologic parameters varied based on different trapping mechanisms. The findings from this study show that the physics-based smart proxy models can be used as a robust predictive tool to estimate the sequestration of CO2 in deep saline aquifers with similar reservoir characteristics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference73 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3