Numerical Investigation of the Influence of Air Contaminants on the Interfacial Heat Transfer in Transonic Flow in a Compressor Rotor

Author:

Wiśniewski PiotrORCID,Zhang Guojie,Dykas Sławomir

Abstract

Atmospheric air is a commonly used working fluid in turbomachinery. The air typically contains a certain amount of suspended solid particles, as well as water in the form of vapor or droplets. In the current paper, we focus on the numerical modeling of humid air transonic flow in turbomachinery. In this paper we demonstrate a rarely considered, but as presented herein important influence of air humidity, pollution and liquid water content on the performance of the first stage of the gas turbine compressor and turbofan engine fan (NASA rotors 37 and 67). We also discuss the impact of the interfacial heat transfer associated with steam condensation or water evaporation on the distribution of stagnation parameters at the rotor outlet, the rotor performance, and flow conditions, as well as losses. Results demonstrate the impact of the number of pollution particles and water droplets on the compression process in the analyzed rotors, especially on the Mach number distribution in the blade-to-blade channel. In this paper we highlight that the air pollution and liquid water content, together with such physical phenomena as steam condensation or water droplets evaporation, exert a significant influence on work parameters, losses and efficiency, and thus should be considered in high-velocity airflow simulations.

Funder

Polish National Agency for Academic Exchange

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation

2. MAT, a novel, open cycle gas turbine for power augmentation

3. Humidified gas turbines—a review of proposed and implemented cycles

4. Numerical Simulation of Unsteady Moist-air Flows through Whole-annulus Rotor Blade Rows in Transonic Compressor;Moriguchi;Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference,2019

5. Numerical analysis of the impact of pollutants on water vapour condensation in atmospheric air transonic flows

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3