Strain Sensor-Inserted Microchannel for Gas Viscosity Measurement

Author:

Shiba KotaORCID,Liu Linbo,Li Guangming

Abstract

Quantifying the viscosity of a gas is of great importance in determining its properties and can even be used to identify what the gas is. While many techniques exist for measuring the viscosities of gases, it is still challenging to probe gases with a simple, robust setup that will be useful for practical applications. We introduce a facile approach to estimating gas viscosity using a strain gauge inserted in a straight microchannel with a height smaller than that of the gauge. Using a constrained geometry for the strain gauge, in which part of the gauge deforms the channel to generate initial gauge strain that can be transduced into pressure, the pressure change induced via fluid flow was measured. The change was found to linearly correlate with fluid viscosity, allowing estimation of the viscosities of gases with a simple device.

Funder

JSPS

Ministry of Education, Culture, Sports, Science, and Technology

The Telecommunications Advancement Foundation

Marubun Research Promotion Foundation

China Scholarship Council

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3