Recent Development of Neural Microelectrodes with Dual-Mode Detection

Author:

Xu Meng,Zhao YuewuORCID,Xu Guanghui,Zhang Yuehu,Sun Shengkai,Sun Yan,Wang JineORCID,Pei Renjun

Abstract

Neurons communicate through complex chemical and electrophysiological signal patterns to develop a tight information network. A physiological or pathological event cannot be explained by signal communication mode. Therefore, dual-mode electrodes can simultaneously monitor the chemical and electrophysiological signals in the brain. They have been invented as an essential tool for brain science research and brain-computer interface (BCI) to obtain more important information and capture the characteristics of the neural network. Electrochemical sensors are the most popular methods for monitoring neurochemical levels in vivo. They are combined with neural microelectrodes to record neural electrical activity. They simultaneously detect the neurochemical and electrical activity of neurons in vivo using high spatial and temporal resolutions. This paper systematically reviews the latest development of neural microelectrodes depending on electrode materials for simultaneous in vivo electrochemical sensing and electrophysiological signal recording. This includes carbon-based microelectrodes, silicon-based microelectrode arrays (MEAs), and ceramic-based MEAs, focusing on the latest progress since 2018. In addition, the structure and interface design of various types of neural microelectrodes have been comprehensively described and compared. This could be the key to simultaneously detecting electrochemical and electrophysiological signals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Basic Research Pilot Project in Suzhou

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3