Point-of-Care Portable 3D-Printed Multispectral Sensor for Real-Time Enzyme Activity Monitoring in Healthcare Applications

Author:

Jesuraj Antony,Hassan Umer

Abstract

Absorbance spectroscopy finds many biomedical and physical applications ranging from studying the atomic and molecular details of the analyte to determination of unknown biological species and their concentration or activity in the samples. Commercially available laboratory-based spectrometers are usually bulky and require high power and laborious manual processing, making them unsuitable to be deployed in portable and space-constrained environments, thereby further limiting their utility for real-time on-site monitoring. To address these challenges, here we developed a portable 3D-printed multispectral spectrophotometer based on absorbance spectroscopy for real-time monitoring of enzyme molecular activity. Monitoring enzyme (such as tyrosinase) activity is critical, as it quantifies its reaction rate, which is dependent on many factors such as the enzyme and substrate concentrations, temperature, pH, and other regulators such as inhibitors and effectors. Tyrosinase is a critical enzyme responsible for melanin synthesis in living beings and exhibits enzymatic browning in fruits and vegetables. It finds various commercial applications in the fields of healthcare (skin pigmentation, wound healing, etc.), forensics, and food processing. Here, tyrosinase activity was monitored using a 3D-printed spectral sensor at different rates and compared against measurements obtained from laboratory instruments. The enzyme activity was also studied using kojic acid (i.e., a commonly employed commercial tyrosinase inhibitor) while varying its molar and volume concentrations to control the reaction rate at discrete activity levels. For tyrosinase activity monitoring, the fabricated device has shown significant correlation (R2 = 0.9999) compared to measurements from the standard table-top spectrophotometer. We also provide a performance comparison between the 3D-printed and the laboratory spectrophotometer instruments by studying tyrosinase enzyme activity with and without the influence of an inhibitor. Such a device can be translated into various absorbance spectroscopy-based point-of-care biomedical and healthcare applications.

Funder

Department of Electrical and Computer Engineering and the Global Health Institute at Rutgers, The State University of New Jersey

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3