Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide

Author:

Zhu Danzhu,Kong HaoORCID,Yang Guozheng,He Peng,Luan Xin,Guo Lei,Wei GangORCID

Abstract

Hydrogen peroxide (H2O2) is one of the intermediates or final products of biological metabolism and participates in many important biological processes of life activities. The detection of H2O2 is of great significance in clinical disease monitoring, environmental protection, and bioanalysis. In this study, Ti3C2-based nanohybrids are prepared by the biological modification and self-assembled peptide nanosheets (PNSs)-based biomimetic synthesis of copper sulfide nanoparticles (CuS NPs), which show potential application in the fabrication of low-cost and high-performance electrochemical H2O2 biosensors. The synthesized CuS-PNSs/Ti3C2 nanohybrids exhibit excellent electrochemical performance towards H2O2, in which CuS NPs can catalyze the decomposition of H2O2 and realize the transformation from a chemical signal to an electrical signal to achieve the purpose of H2O2 detection. The prepared CuS-PNSs/Ti3C2-based electrochemical biosensor platform exhibits a wide detection range (5 μM–15 mM) and a low detection limit (0.226 μM). In addition, it reveals good selectivity and stability and can realize the monitoring of H2O2 in a complex environment. The successful biomimetic synthesis of CuS-PNSs/Ti3C2 hybrid nanomaterials provides a green and friendly strategy for the design and synthesis of functional nanomaterials and also provides a new inspiration for the construction of highly effective electrochemical biosensors for practical detection of H2O2 in various environments.

Funder

National Natural Science Foundation of China

Taishan Scholars Program of Shandong Province

High-Grade Talents Plan of Qingdao University

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3