Improved Split TEV GPCR β-arrestin-2 Recruitment Assays via Systematic Analysis of Signal Peptide and β-arrestin Binding Motif Variants

Author:

Wu Yuxin,von Hauff Isabelle V.,Jensen Niels,Rossner Moritz J.ORCID,Wehr Michael C.ORCID

Abstract

G protein-coupled receptors (GPCRs) are major disease-relevant drug targets; robust monitoring of their activities upon drug treatment is key to drug discovery. The split TEV cell-based assay technique monitors the interaction of an activated GPCR with β-arrestin-2 through TEV protein fragment complementation using a luminescent signal as the readout. In this work, split TEV GPCR β-arrestin-2 recruitment assays were optimized to monitor the endogenous ligand-induced activities of six GPCRs (DRD1, DRD2, HTR2A, GCGR, AVPR2, and GLP1R). Each GPCR was tested in four forms; i.e., its wildtype form, a variant with a signal peptide (SP) to facilitate receptor expression, a variant containing the C-terminal tail from the V2 vasopressin receptor (V2R tail) to promote β-arrestin-2 recruitment, and a variant containing both the SP and V2R tail. These 24 GPCR variants were systematically tested for assay performance in four cell lines (HEK-293, PC12 Tet-Off, U-2 OS, and HeLa). We found that the assay performance differed significantly for each GPCR variant and was dependent on the cell line. We found that V2R improved the DRD2 split TEV assays and that HEK-293 cells were the preferred cell line across the GPCRs tested. When taking these considerations into account, the defined selection of assay modifications and conditions may improve the performance of drug development campaigns that apply the split TEV technique as a screening tool.

Funder

China Scholarship Council

Faculty of Medicine of the Ludwig-Maximilians-Universität München

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering signalling pathways in mammalian cells;Nature Biomedical Engineering;2024-09-05

2. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors;International Journal of Molecular Sciences;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3